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Abstract 

We investigate a divide-and-conquer technique in multidimensional space which decomposes a geometric 

problem on N points in k dimensions into two problems on N/2 points in k dimensions plus a single problem 

on N points in k-1 dimension. Special structure of the subproblems is exploited to obtain an algorithm 

for finding the two closest of N points in O(N log N) time in any dimension. Related results are discussed, 

along with some conjectures and unsolved geometric problems. 

Introduction 

A principal failing of computational geometry 

[Shamos, Shamos and Hoey] is that it has not suc- 

cessfully addressed problems in greater than two 

dimensions. Such a study would have important 

practical and theoretical benefits -- it would shed 

light on linear programming, multidimensional data 

analysis, geometric optimization, and retrieval on 

multiple keys, as well as provide a link between 

complexity and dimensionality. Some preliminary 

results are known. [Preparata and Hong] show that 

the convex hull of N points can be found in 

O(N log N) time in three dimensions but that 

O(N 2) is a lower bound in any higher dimension. 

The maxima of a set of vectors can be found in 

O(N log k'2 N) time in dimension k [Kung et al.] 

and we conjecture that this time suffices to ideno 

tify the extreme points of a k-dimensional set. 

The most basic questions, however, have not 

been studied. These include finding nearest and 

farthest points, determining separability of point 

sets and other elementary properties. We intend in 

this paper to begin a systematic investigation of 

higher-dimensional geometry and its relation to 

complexity. 

Closest-Point Problems 

In this section we will investigate a number 

of problems dealing with the proximity of N points 

in Euclidean k-space. The most primitive closest- 

point problem is that of finding the two nearest 

of the N points; we will let P(N,k) denote the 

worst-case time of the best possible algorithm (the 

minimax complexity) for solving the closest-pair 

problem. The fixed radius-near-neighbor problem 

asks for all pairs of points within some fixed dis- 

tance 6 of one another. A special case of this 
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problem arises when it is known that no ball of 

radius 8 in the space contains more than some con- 

stant c ~ I number of points (this condition is 

known as sparsity); call the minimax complexity of 

the sparse fixed-radius-near-neighbor problem 

S(N,k). The all-closest-points problem asks for 

the nearest neighbor of each of the N points; we 

will use A(N,k) for its minimax complexity. We 

will assume the RAM/RASP model of computation in 

measuring the complexity of these problems [Aho, 

et el.]. 

All of these problems can be solved iN a sim- 

ple-minded way by investigating each of the (2~ 

pairs of points; the complexity of such an algor- 

ithm would be O(kN2). Algorithms that make use of 

special properties of the plane have shown that 

P(N,2) = A(N,2) = O(N log N) [Shamos and Hoey], 

but these algorithms do not generalize to k-space. 

We will present a divide-and-conquer algorithm for 

the closest-pair problem in the plane, generalize 

it to k-space, and extend the method to other 

closest-point problems. The divide-and-conquer 

method used to solve the problems is interesting 

in that the recursion operates by solving two prob- 

lems on N/2 points in k-space, then projecting the 

remainder of the problem into a lower dimension. 

In this aspect it is similar to the algorithm for 

finding the maxima of a set of vectors given in 

[Kung, et el.]. 

We now give a class of divide-and-conquer 

algorithms for closest-point problems. We will 

proceed by presenting the basic divide-and-conquer 

algorithm for the closest-pair problem in the 

plane, generalizing it, then speeding up the gen- 

eralizations. The algorithms, with the analyses 

of their worst-case running times, will be 

presented as proofs of theorems bounding the com- 

plexity of the problems. Because of its tractabil- 

ity we will work in the L metric to measure the 

distance between two points (the maximum coordinate 

metric), but use of any other L metric would 
P 

change the time complexity of our algorithms only 

by some multiplicative constant. The L= distance 

between two points (xi,Yi) and (xj,yj) (in rectan- 

gular coordinates) is given by d (i,j) = 

max(Ixi-xj],lyi-Yj]). 

Theorem ]. P(N,2) ~ O(N log N). 

Proof: To solve the problem for a collection of N 

points, divide the points by a vertical line L 

such that N/2 points lie on either side of L (Fig- 

ure ]) and let A denote the leftmost N/2 points 

and B the rightmost. Recursively use this algo- 

rithm to find 6A, the distance between the closest 

points of A, and similarly for 8 B. We will show 

how to obtain 8AB , the distance between the two 

closest points of A U B, in O(N) time. Let 

8 = min(6A,6B). Figure ] shows lines parallel to 

L on either side of it at distance 8. The area 

between these lines is a vertical slab of width 28. 
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Figure i. 
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If there is any pair in A U B closer than 6 

apart~ both points of the pair must lie in the 

slab. Now consider any square of side 26 whose 

center lies on L (Figure 2). Since the minimum 

separation of points in the square on either side 

of L is 8, the square can contain at most a con- 

stant number c of points (c = ]2 in this metric). 
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Figure 2. 

Project all the points lying in the slab onto L. 

Within any interval of length 28 on L there are at 

most ]2 points. Since projection cannot increase 

the distance between two points, we can find all 

pairs of points within 6 of each other in the slab 

by investigating all pairs of points within 6 of 

each other in the projection. If there is a pair 

closer than 6 apart in A U B it will be found at 

this time. By the above observations there are at 

most ]2N pairs within 6 in the projection, so if 

the points were presorted by y-coordinate, the 

checking could be done in linear time. Thus the 

recurrence relation describing the algorithm is 

T(N) = 2T(N/2) + O(N), giving an O(N log N) algo- 

rithm. [] 

This procedure was discovered by [Strong] and 

can be generalized to any dimension. 

Let us take careful note of the strategy 

behind this algorithm. The original problem deal- 

ing with N points in the plane is solved by solving 

two problems on N/2 points in the plane, then 

"patching up" the tentative solution by reducing 

the problem to one on N points in one dimension i__n 

which sparsity is ~uaranteed. We gain two impor- 

tant insights from this analysis: First, that di- 

vide and conquer can he used in multidimensional 

spaces, and seconds that sparsity~ though not pres- 

ent in the original set of points, can be induced 

in a subproblem. We will see later exactly how to 

induce sparsity; let us now examine the sparse 

problem in detail. 

Theorem 2. S(N,2) K O(N log N). 

Proof: We describe a divide-and-conquer algorithm 

similar to that given in the proof of Theorem ]. 

As before, we divide the points by a vertical line 

L into two sets A and B, each of size N/2 (this 

can be done in linear time after presorting or by 

a linear median algorithm [Blum et al.]). We then 

use this algorithm recursively to enumerate all 

pairs within distance 6 of one another in A and 

similarly for B. We must now enumerate all pairs 

within distance 8 of one another with one point in 

A and the other in B. To do this we consider all 

points in the slab given by the area within 6 of L 

(note here that 8 is fixed at the time the algo- 

rithm starts execution). Instead of having to 

prove sparsity as we did before (we showed c = ]2), 

we know from the problem statement that no square 

of side 26 in the plane has more than some constant 

c points (since a square of side 28 is a 8-ball in 

the L metric). We now project all the points in 

the slab onto L and examine all pairs within 6 of 

each other on L for the property of being within 8 
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in the plane. As before, if the points were pre- 

sorted by y-coordinate, then the checking could be 

accomplished in linear time, giving again the re- 

currence T(N) = 2T(N/2) + O(N), for an O(N log N) 

algorithm. [] 

In the above algorithm we reduce the sparse 

problem in the plane to two sparse problems on N/2 

points in the plane and one sparse problem on N 

points on the line. This strategy can immediately 

be generalized to collections of points in k-space, 

giving rise to the following theorem: 

Theorem 3. S(N,k) ~ O(N log k'1 N) for k m 2. 

Proof: We will once again use a divide-and-conquer 

algorithm. We partition the points into two col- 

lections A and B, each having N/2 points. We in- 

duce this partition by P, a k-] dimensional hyper- 

plane perpendicular to the x-axis (for k = 2, the 

"hyperplane" was the ]-dimensional line L). We 

recursively enumerate all fixed-radius near-neigh- 

bors in A and similarly for B. We now must enu- 

merate all fixed-radius near-neighbor pairs with 

one point in A and one in B. To accomplish this we 

project all points within 8 of P onto P. Notice 

that this new set of points is still sparse with 

the same sparsity constant c. We now recursively 

use this algorithm on the (up to) N points in the 

(k-])-dimensional problem. Because of the projec- 

tion, not all the pairs within 8 on P will be with- 

in 8 in the original space, so an extra check will 

have to be made to ensure their proximity in the 

original space before they are reported (as well as 

ensuring that they are on different sides of P). 

This algorithm yields the recurrence relation 

S(N,k) = 2S(N/2,k) + S(N,k-]) + O(N) (where the 

O(N) is the Overhead work done in dividing the 

points into the two collections A and B). Using 

from Theorem 2 the fact that S(N,2) ~ O(N log N), 

we see by induction on k that the worst-case run- 

ning time of the algorithm is bounded above by 

O(N log k-] N). D 

In Theorem 3 the time-dependence on N seems 

to increase with k, a depressing but not a surpris- 

ing prospect. If we examine the algorithm in 

closer detail, however, we see that the exponential 

factor in the logarithmic term comes from our will- 

ingness to solve a problem of size N in k-] dimen- 

sions. If, however, we can bound the subproblem 

size by some function f(N) such that f(N) log f(N) 

O(N), then we can easily prove by induction on k 

that S(N,k) ~ O(N log N). (The recurrence used in 

the proof of Theorem 3 becomes 

S(N,k) = 2S(N/2,k) + O(N) + S(f(N),k-]) 

= 2S(N/2,k) + O(N) 

whose solution is S(N,k) = O(N log N).) Our strat- 

egy in bounding the problem size of the (k-])-di- 

mensional problem will involve a more intelligent 

choice of the cut-plane P used to partition the 

collection into the two subsets A and B. Specif- 

ically, we must choose a cut-plane that ensures 

two things: First, neither A nor B can contain 

"too many" points -- the subproblems in k-space 

must maintain balance. Second, there must be no 

more than O(N/log N) points within distance 6 of P 

(this condition bounds the size of the subproblem 

to be solved in (k-])-space). We proceed now by 

showing the existence of cut-planes with the above 

properties, first in 2-space and then in general 

k-space. We will then show how an algorithm can 

use these desirable cut-planes to reduce S(N,k). 
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Theorem 4. (Existence of a cut-line in the plane.) 

Given a sparse collection of N points in the plane, 

there exists a cut llne L perpendicular to one of 

the original coordinate axes with the following 

properties: (]) Both of the subcollections A and 

B induced by L contain at: least N/8 of the points. 

(2) There are at most 2cN ]/2 points within distance 

8 of L. 

Proof: By contradiction: We demonstrate that a 

set without the properties described is at once 

very dense and very sparse. Consider the points 

sorted in increasing order by x-coordinate. Let 

us now restrict our discussion to only the middle 

3N/4 points in the x-dimension (finding a cut-plane 

between two of the points in the restricted set 

will ensure condition ] of the theorem). Assuming 

the opposite implies that every collection 

of 2cN ]/2 points contiguous in the x-dlmension 

projects onto a segment of the x-axis less than 26 

in length (if a given collection projected onto a 

wider interval, its center could be used to define 

a cut-line L with the desired properties). The 

situation that we have described is depicted in 

Figure 3. The regions R and L contain the right- 

most and leftmost N/8 points, respectively. The 

region C is that to which we have restricted our 

discussion; it contains 3N/4 points. The region T 

contains a set of 2cN ]/2 points that are contiguous 

in the x dimension; we know that the width of T is 

no greater than 26. Since T is any collection of 

2cN ]/2 points in C, we can now bound the width of 

C by observing that C is composed of'(3N/4)/ 

(2cN ]/2) collections of 2cN ]/2 points, and each of 

these collections is of width less than or equal to 

26, so we can bound the width of C by 

width(C) ~ 3N~ 26 = - -  
2cN~/2 

L C 

Figure 3. 
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We have thus far considered only Cx, the center 

points in the x-dimension; similar arguments could 

be made concerning %, the center 3N/4 points in 

the y-dimension. Let us now examine Cxy , the inter- 

section of C and C . Since at most N/8 points are 
x y 

in each of Lx, Ly, Rx, and Ry, t h e r e  must be a t  

least N/2 points in Cxy. On the other hand, since 

the length of the sides of C is bounded by 
3Ni/2 xy 

• the total area of C is bounded above by 
4c 

9N~ 2xy 
that length squared, or By sparsity we know 

]6c 2 " 
that the number of points in C is therefore 

xy 

bounded above by -- • --= 962 c 9N/64c. We have now 
16c 2 482 

shown that C contains at least N/2 points (by 
xy 

hypothesis), but at most 9N/64c points for c ~ I, 

which is a contradiction. Thus, the required cut- 

line exists. [] 

Theorem 5. (Existence of a cut-plane in k-space.) 

Given a s~arse collection of N points in k-space, 

there exists a cut-plane P perpendicular to one of 

the original coordinate axes with the following 

properties: (1) Both of the subcollections A and 

B induced by P contain at least N/4k of the points. 

(2) There are at most kcN I-I/k points within dis- 

tance 8 of P. 
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Proof: The proof proceeds in the same manner as 

that of Theorem 4. Assuming the converse of 

the theorem leads us to the contradiction that the 

hypercube in k-space corresponding to C x contains 

at least N/2 points, but at most • cN 

points, which is less than N/2 for k > 1, c ~ 1. 

We will now show how the existence of cut- 

planes with the given properties allows us to speed 

up the sparse fixed-radius near-nelghbor algorithm. 

Theorem 6. S(N,k) ~ O(N log N). 

Proof: We will modify the algorithm given in the 

proof of Theorem 3 to make use of the cut-planes of 

Theorem 5. The preprocessing of the points will 

include sorting them on each of the k coordinates; 

this can be done in O(k N log N) time. The recur- 

sire algorithm to enumerate all fixed-radius near- 

neighbor pairs will choose its cut-plane P by 

scanning each of the k sorted sequences until a 

point in some sequence is found that will define 

cut-plane -- Theorem 5 guarantees that such a cut 

plane exists. The scan involves investigating the 

middle N(I - ]/4k) points in each dimension until 

a collection of kcN ]-]/k contiguous points is 

I 

found which projects onto an interval of at most 

26; this scan can be done in O(kN) time. We now 

enumerate all fixed-radius near-neighbor pairs in 

each of A and B, recursively. The cost of this 

step will be greatest when the problem sizes are 

most unbalanced which (by Condition ] of Theorem 

5) will be S(N/4k,k) + S(N(|-]/4k),k). We now, as 

before, project all points within 6 of P onto P. 

Notice (by condition 2 of Theorem 5) that at most 

kcN~'l/k points will survive. Solving the subprob- 

lem in k-] dimensions will therefore cost at most 

S(kcN]-I/k,k-1~. Thus the recurrence for the 

recursive algorithm is 

S(N,k)~S(N/4k,k)+S(N(]-]/4k,kl+O(kN)+S(kcN]-]/k,k4). 

For any fixed k, the above recurrence yields 

S(N,k) ~ O(N log N). The proof of this, by induc- 

tion on k, is based on the fact that if S(N,k-]) 

O(N log N), then S(kcN]']/k,k-]) ~ O(N). Theorem 

2 gives the basis for the induction. 

We end our discussion of the sparse fixed- 

radius near-neighbor problem by pointing out that 

sparsity is necessary in order to solve the problem 

in O(N log N) time. If the sparsity is not guaran- 

teed, then it is possible to have all the points 

within some very small volume, giving O(N 2) pairs 

of fixed-radius near-neighbors. Any correct algo- 

rithm to enumerate all such pairs would have time 

complexity greater than or equal to O(N2). 

Now that we have some powerful tools with 

which to deal with the sparse flxed-radius near- 

neighbor problem, let us return to the closest- 

pair problem. The following theorem shows how one 

can employ the fast sparse fixed-radius near-neigh- 

bor algorithm to find closest pairs. 

Theorem 7. P(N,k) ~ O(N log 2 N) 

Proof: We will generalize the algorithm given in 

the proof of Theorem ] to k-space. To solve the 

closest-pair problem for a collection of N points, 

divide the points by a plane P perpendicular to 

the x-axis such that N/2 points lie on either side 

of P in regions A and B. Recursively use this al- 

gorithm to find 6A, the distance between the two 

closest points in A, and similarly for 6 B. We will 

now show how to employ Theorem 6 to find 6AB , the 

distance between the two closest points in A U B 

in O(N log N) time. Let 6 = min(6A,%). Just as 
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in Theorem ] we showed that no 8-ball in the plane 

can contain more than ]2 points, a similar argu- 

ment shows that no 8-ball in k-space can contain 

more than 4(3 k-I) points. This same sparsity con- 

stant is preserved as we project all points within 

8 of P onto P. If there is any pair in the space 

closer than 8 apart, that pair is now within 8 on 

P. We can find all the fixed-radius near-neighbor 

pairs in P in time O(N log N), (by Theorem 6), and 

check these to determine which are closer than 8 

apart in k-space. The recurrence for this algo- 

rithm is P(N,k) = 2P(N/2,k) + S(N,k-]) + O(N); 

using Theorem 6 we can show that P(N,k) 

O(N log 2 N). [] 

The logarithmic te~nn in Theorem 7 is squared 

for the same reason that the logarithmic term in 

Theorem 3 is exponentiated -- we are willing to 

solve a subproblem in k-1 dimensions on as many as 

N points. We reduced the complexity of the sparse 

fixed-radius near-neighbor algorithm by an appro- 

priate choice of cut plane; we can use a similar 

strategy for this problem. This will be a bit 

trickier, since sparsity is not guaranteed in the 

original set and we do not have a convenient value 

of 8 as before. 

Theorem 8. P(N,k) ~ O(N log N). 

Proof: Our proof will proceed in three stages. We 

will first show how the bound given in the theorem 

is achieved if an appropriate cut-plane can be 

found. We then demonstrate the existence of and a 

linear method for locating such a cut-plane in 2- 

space. The third stage of the proof demonstrates 

existence and shows how to find a suitable cut- 

plane in k-space. 

We will modify the algorithm used in the 

proof of Theorem 7 to use a cut-plane P with the 

following properties (I) Both A and B (the sub- 

collections induced by P) contain at least N/4K of 

the points. (2) After 8 = min(8 A,8 B) has been 
! 

found, there will be not more than kcN I-I/k points 

within 8 of P. If these conditions are ensured, 

then the recurrence used in the proof of Theorem 7 

becomes 

P(N,k) ~ P(N/4k,k)+P(N(I-I/4k),k)+S(kcN 1"I/k,k-]) 
+ O(N) 

= e(N/4k,k)+P(N(1-1/4k),k) + O(N) 

which gives P(N,k) ~ O(N log N). 

We will now give a method for finding a cut- 

plane with the above properties for the case of 

k = 2 (we will find a cut-line in the plane); we 

will later extend this method to arbitrary k. Let 

L be the line dividing the collection into parts 

with at least N/8 points which maximizes the length 

m needed to cover the projection of 2cN I/2 contig- 

uous points onto one of the coordinate axes (c =12 

for k = 2). The following is a linear algorithm 

to find L, given that the lists are presorted: 

Consider every collection of 2cN I/2 points contig- 

uous when projected on some axis. Let m be the 

interval between the extreme points in the projec- 

tion. The cut line L associated with the collec- 

tion is defined by the arithmetic mean of the ex- 

treme points. This situation is depicted in Fig- 

ure 4. The area labelled T contains a collection 

of 2cN1/2~points contiguous in the x-dimension; 

the cut-line associated with T is labelled L. The 

linear scan to determine the maximum value of m 

starts in the second octile of the list and pro- 

ceeds by keeping two pointers to points 2cN I/2 

elements apart on the sorted list. The distance 

between these two points is noted and the interval 
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m so observed is retained. The cut-line correspond- 

ing to largest such m is used to divide the prob- 

lem and the algorithm proceeds as before, solving 

the two subproblems recursively. To show that 

there are at most 2cN I/2 points within 8 of L it 

suffices to show that m ~ 26 (for we know that 

there are only 2cN ]/2 points within m/2 of L). If 

we assume that m < 26, then we know that any pro- 
# 

jection of 2cN ]/2 points projects onto an interval 

of length at most 28; otherwise the value of m we 

found would not be the maximum. But this condi- 

tion on any collection of 2cN ]/2 points which pro- 

ject onto a 28 interval on one of the coordinate 

axes is what leads to a contradiction in our proof 

of Theorem 4. A similar argument at this point 

can lead us to the same contradiction here. We 

have thus shown that m > 26, and we can find an 

appropriate cut-line for the closest point prob- 

lem in the plane. 

We can generalize this argument to k-space in 

the same way in which we generalized Theorem 4 to 

yield Theorem 5. The linear scan will bound the 

problem size by N/4k, and choose the cut plane P 

maximizing the distance m needed to cover kcN 1-]/k 

contiguous points (where c = 4(3k-1)). It is easy 

to show that after 6 is found, m a 26, and thus the 

size of the (k-])-dimensional subproblem is bound- 

ed by kcN ]']/k. We have thus justified the recur- 

rence given in the first stage of the proof and 

have the theorem as follows. 

Our progress from Theorem ] to Theorem 8 re- 

veals a good deal about multidimensional algorithms. 

We have seen how divide-and-conquer can be employed 

in multidimensional spaces and have developed an 

interesting class of "doubly recursive" algorithms. 

We have demonstrated a relationship between the 

Figure 4. 
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closest-point problem and the sparse fixed-radius 

near-neighbor problem. Sparsity can be induced in 

problems for which it is not an input condition by 

judicious recursive subdivision. We have seen the 

merit of choosing cut planes wisely to limit the 

size of the subproblems to be solved in a space of 

reduced dimensionality. We might wonder if there 

exist more techniques that we might use to further 

reduce the bound on P(N,k). The following theorem 

tells us that we cannot reduce the bound; the al- 

gorithm given in the proof of Theorem 8 is optimal 

with respect to its dependence on N. 

Theorem 9. P(N,k) = O(N log N) and this is optimal. 

Proof: That O(N log N) is a lower bound on the 

time required to determine the two closest of N 

points in dimension one or higher is Theorem ] of 

[Shamos and Hoey]. The proof uses the fact that 

O(N log N) is a lower bound on the element-unique- 

ness problem even if comparisons among linear func- 

tions of the input are allowed. We can use the 

closest-pair algorithm in k-space to test for ele- 

ment uniqueness by embedding the nunDers to be 

tested for uniqueness on a line in k-space and 

then finding the closest pair in that space. The 

elements are unique if and only if the separation 
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of closest pair is non-zero. [] 

Corollary 9.7. O(N log N) is a lower bound on the 

time necessary to find a minimum spanning tree on 

N points in any dimension. 

Our analyses of both the closest pair problem 

and sparse fixed radius near neighbor problem have 

thus far centered about the total number of RAM/ 

RASP operations as the measure of complexity. We 

gain an interesting insight into the problem, how- 

ever, if we instead count the number of interpoint 

distance calculations performed during the execu- 

tion of the algorithms. We will let Pc(N,k) and 

Sc(N,k) denote the minimax number of pointwise 

comparisons made by the closest-point and sparse 

fixed-radius near-neighbor algorithms, respective- 

ly. We then obtain the following unexpected re- 

suit. 

Theorem 70. Pc(N,k) ~ O(N) and Sc(N,k ) ~ O(N). 

Proof: The proof of this theorem proceeds by in- 

duction on k. With presorting it is obvious that 

Pc(N,7) ~ O(N) and SC(N,] ) ~ O(N). If we have 

established that Sc(N,k-]) ~ O(N), then the recur- 

rence from the proof of Theorem 6, modified to 

count the number of pointwise comparisons, becomes 

Sc(N,k) ~Sc (N/4k,k)+Sc(N(7 -7/4k) ,k)+Sc(kCN 7 "7/k,k-7) 

=S C (N/4E ,k) +S C (N (7 -7/4k,k) +O (N 7 -7/k) 

which gives Sc(N,k) = O(N). A similar argument 

shows that Pc(N,k) = O(N). 

Though this theorem is of little use in im- 

proving the running time of the algorithm, it is 

interesting to note that most of the work of the 

algorithm is going into the presorting and the book- 

keeping involved in recursion (along with choosing 

cut planes). Empirical tests have shown that the 

number of distance calculations used in solving 

the closest point problem in the plane is often 

strictly less than N. 

All Closest Points and Minimum Spanning Trees 

Theorem 9 says that we must spend O(N log N) 

time, in the worst case~ in order to find the two 

closest points. Fortunately, a great deal more 

information can be obtained with very little addi- 

tional work. 

Theorem 77. A(N,2) = O(N log N). That is, for N 

points in the plane, the nearest neighbor of each 

can be found in O(N log N) time. 

Proof: This result was obtained in [Shamos and 

Hoey] by Voronoi techniques which, although appli- 

cable in all dimensions, have only lead to fast 

algorithms in the plane. We give here a different 

method for two dimensions which immediately gener- 

alizes to k dimensions. 

Partition the set of points via a vertical 

line L into subsets A and B, as in Theorem 7. 

Solve A(N/2,2) twice recursively, so at this stage 

we know, for each point in A its nearest neighbor 

in A and for each point in B its nearest neighbor 

in B. We must now find every point that is closer 

to some point in the other set than to any point 

in its own set. Let r(p) be the distance from p to 

its nearest neighbor in its own subset. By the re- 

cursive step, all the r(p) are known. For every 

point p, consider the r(p)-ball centered at p. In 

how many of these spheres centered in A does a 

given point % of L lie? Figure 5 shows that this 

number is four in two dimensions under the L 2 

(Euclidean) metric. (This follows from the maximum 

density of a point packing.) In any dimension k 
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and L metric the maximum number of balls cover- 
P 

ing % is some constant c(k,p). Project every point 

a of A onto L. Let ~(a) be the image of a on L. 

be the time necessary to find a minimum spanning 

tree on N points in k dimensions under any L 
P 

metric. 

A B 

£ 

Figure 5. 

In order to find the nearest neighbor of a in B, 

it is only necessary to examine those b whose 

r(b)-spheres contain ~(a). This means that for 

each of the N points of A U B, only a constant num- 

ber other points need be examined. If the points 

are presorted by y-coordinates all of the checking 

can be accomplished in linear time and A(N,2) = 

2A(N/2,2) + O(N) = O(N log N). [] 

k-1 
Corollary 11.1. A(N,k) ~ O(N log N) 

Proof: Analogous to the proof of Theorem 3. [] 

A solution to the all nearest neighbors prob- 

lem defines a graph in which points i and j are 

joined by a straight line iff i is a nearest 

neighbor of j or vice-versa. (If i has more than 

one nearest neighbor, only one is considered and 

without loss of generality the resulting graph is 

acyclic.) The graph is a minimal spanning forest, 

so A(N,k) solves the minimal spanning forest prob- 

lem. A minimum spanning tree results if the all- 

nearest-neighbors graph is connected, but this 

normally does not happen fortuituously. Let T(N,k) 

Theorem 12. T(N,2) = O(N log N) 

Proof: [Shamos and Hoey] [] 

Theorem 13. T(N,k) ~ A(N,k). 

Proof: Immediate. It follows from the fact that 

the nearest-neighbor graph is a subgraph of the 

minimum spanning tree. [] 

Conjectures and Unsolved Problems 

The structure of the closest-point algorithms 

in high dimensions leads us to conjecture that 

T(N,k) = O(N log N). Some credence is given to 

this prediction by the studies of [Bentley and 

Friedman] who show that a "nearly minimal" span- 

ning tree can be constructed in any constant dimen- 

sion in O(N log N) time. 

A serious difficulty with these "fast" algo- 

rithms is that their complexity is exponential in 

k, the dimension. This is particularly annoying 

because naive algorithms for the nearest neighbor 

and minimum spanning tree problem run in O(k~) 

time, linear in dimension. We know of no way to 

avoid the exponential explosion in dimension that 

occurs when we attempt to develop an algorithm 

that is of optimal order in N. The issue comes to 

a head in the problem of finding the two closest 

of N points in N dimensions. The naive algorithm 

requires O(N 3) time and there are N 2 independent in- 

puts. We conjecture that an O(N 2 log N) algorithm 

exists and is optimal. 

The connection between closest and farthest 

points is curious. If F(N,k) denotes the time 
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required to find the two farthest of N points in 

k dimensions, we have O(N) = F(N,I) < P(N,]) = 

O(N log N). That is, in one dimension, finding 

farthest points is easier than finding closest 

points. In two dimensions, they have the same 

complexity [Shamos and Hoey]. However, no divide- 

and-conquer algorithm is known for the farthest- 

points problem that generalizes to higher dimen- 

sions. There is some iI~ication that F(N,3) = 

O(N log N) (see [Preparata and Hong]) but it has 

not even been shown that F(N,k) < O(N 2) for k > 3. 

It is natural when considering closest and 

farthest pairs to ask how quickly the mth closest 

pair can be found in k dimensions. For m = N/2 

this is the median interpoint distance, whose mini- 

max time complexity we denote by M(N,k). The 

problem can be solved in one dimension in O(N log N) 

time but M(N,k) is not known to be less than O(N 2) 

for k > 1. 

Stmmnary 

We have tried to broaden the scope of computa- 

tional geometry by extending its reach to an arbi- 

trary number of dimensions. Using a method of re- 

cursion in both problem size and dimension has en- 

abled us to improve radically the time bounds on 

multidimensional problems. Unfortunately, at each 

recursion step we are only able to reduce the di- 

mension by one, while the number of points is re- 

duced by half. This means that the algorithms are 

much more sensitive to an increase in the number 

of dimensions than they are to an increase in the 

number of data points. This effect appears to be 

a general feature of geometric algorithms. 
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